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1. We shall consider the motion of a particle subject to the action 
of the so-called gyroscopic force F, i.e. a force which is perpendicular 

to the velocity v of the particle. Further, we shall assume that such a 
force can be represented by a vector product 

F=vxCD (1.1) 

where the vector 0 depends on the coordinates of the particle only. 

As an example consider the motion of an electron in a magnetic field 
subject to the action of the Lorentz force 

F=+H, UP=+H (1.3 

where H is the intensity of the magnetic field, e is the charge of the 
electron and c is the velocity of light. 

As a second example consider a particle attracted by a fixed axis 
with a force proportional to the distance of the particle from the axis, 
and study the motion of this particle with respect to a coordinate system 
which rotates uniformly with angular velocity o with respect to the 
above fixed axis. The law of relative motion then reads: 

mw=-kr+J,+J,, J, = mro2, Je=2mvxto (I*31 

Here r is the vector directed from the particle to the axis along the 

shortest distance, J, is the transport (centrifugal) inertia force and 

Jc is the Griolis inertia force. If we put k = no 2, then we have 

mw=2mvxw, 0=2ma, 

Consider first some general properties of the motion of a particle 
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subject to the action of a mroscopic force, Let the equation of motion 
be of the form 

~(mv)=vx@ (W 

where the mass m = m(t, v) is a variable quantity which depends on the 

time t and the velocity v. Then u = vr, v = ds/dt, where t is the unit 

vector along the tangent. We easily find that 

Since dr/dt = (dr/ds~(ds/d~) = au/p, then finally we have 

d (mv) 7-;li--fn$“= VXCD (1.5) 

Multiplying scalarly both sides of this equality by the unit vector t, 

we obtain 

&mv)=o 

From the last equation follows the law of conservation of the scalar 
quantity, called the quantity of motion [rn~ent~ 1 : 

q = mv = const WV 

Conversely, from this conservation law it follows that, due to (l.S), 

the force is directed along the principal normal to the tra.jectory. In 

the particular case where the mass depends only on the veloeity, it 
follows from (1.6) that the motion is uniform and hence the mass is con- 

stant. 

Now let the particle be subject to a potential force F, = - grad V, 

as well as to the mroscopic force. '&en 

d(mv) 
o!t 

= -gradV,+vx<f, (1.7) 

Multiplying this equality scalarly by the vector dr= vdt, we obtain 

dr d (mv) .-=v.d(mv)= 
dt 

- gradV,.dr= -ddV, 

Introducing the notation 

we find 
5 mvdv = h 



Properties of aotion in presence of gyroscopic 

Hence, d6t~* + I$ - A) = 0. Thus, we have the law of 

2T+V,-i==2-- 
C 
T =+-mv2) 

forces 1551 

conservation 

fW 

In the case of constant mass X = (1/2)mv2 = T, and equality (1.9) ex- 
presses the law of conservation of the mechanical energy. In relativistic 
mechanics we have 

and in this case (1.9) expresses the law of conservation of energy of 
the electron Cc f. , for example, E 2, C&apt. 10 1): 

h=mva+I/,--h=. mec2 
IQ 

-_ + V, = me2 + V, (1.11) 

2. Now let the particle be subject to the action of an arbitrarily 
given force Fs and a gyroscopic force F = YX @, where Q is a constant 
vector. In this section we shall cansider the mass of the particle to be 
constant . 

On the basis of (1.3) we can assert that in the presence of a gyro- 
scopic force the motion of the particle is identical to the motion of 
this same particle with respect to a coordinate system which rotates 
uniformly with angular velocity o= (l/Z m)@ about the axis coinciding 
with the vector a’, the particle being subject to the action of a force 

2 of attraction to the axis of rotation, equal to - mr o , instead of a 
gyroscopic force. 

If the vector rP is so small that the square of its modulus is negli- 
gible, tben this supplementary force can be neglected. 

In particular, in the case of the motion of an electron in a magnetic 
field, we have, as was said before, Q, = (e/c) a ‘Ihe quantity 
0 = (e/2 cm) A is called Iarmor’s angular velocity (cf., for example, 
E 1, sect. 15 1 1. 

As an illustration consider the motion of a particle in the Uxy-plane 
subject to the action of a central force F, and a Ryroscopic force F. 
Assume that the Oz-axis coincides with the constant direction of the 
vector Cp. 

Using the expressions for the projections of the velocity and acceler- 
ation of the particle on the radius vector and the perpendicular to the 
latter 
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we obtain the projections Fr = r (PO, Fs = - ;@ of the force F = vxf#~ and 

the equations of motion 

(2.1) 
m (i -i@) = F, + r&D = F, + 2rmo6, ~-$(rG) = -&= -2mio 

From the second equation we find the generalized area integral 

g [r2 (6 + co)] = 0, r2 (e + 0) = c P-2) 

Solving this equation for i and substituting the expression so obtained 
into the first equation of (2.11, we obtain the law of motion of a 
particle in the radial direction 

. 
mr=F, +m~-mrd (2.3) 

This is the same as if the particle were subject to the action not 
only of a central force but also of a force of attraction to 
proportional to the distance from the latter, and a force of 
from this center, inversely proportional to the cube of this 

If the central force is a function of this distance only, 
F,, = - grad V,, then 

rnr = - grad V, v=v,+~(;+r63)” 

the center, 
repulsion 
distance. 

so that 

(2.4) 

These results may be useful for the investigation of motion of an 
electron in a cylindrical magnetron, the cathode and the anode of which 
are coaxial cylinders of radii rl and r2, respectively, and the intensity 
a of the magnetic field is directed along the comnon axis of the 
cylinders. If q+ and &( > q+ ) are the potentials of the cathode and 
anode, respectively, then it is easy to see that the potential V. of the 
electric field is 

(2.5) 

In order to investigate,the problem of hitting the anode by the 
electrons radiating from the cathode, apply Equation (2.3), putting 

(2.6) 

Since from (2.4) follows the equality (1/2)mr* + V = const, then it 
is easy to obtain from here the condition that the tTajectories of 
electrons radiating from the cathode with radial velocity v,, hit the 
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anode, namely 

1/2 mu,2 + V (r~) = v (r2) 

Here, by virtue of (2.2), we can write that C = rl’ti = r,2eH/2cn. 

3. Consider now a simple electro-mechanical analogy. Consider an ideal 
flexible inextensible string, each element ds of which is subject to the 
action of the force F,ds. As it is well known, the equilibrium condition 
of the string is 

&P’S) +F, =O (3.1) 

where the scalar quantity p is the tension of the string. Let us compare 
this equation with that of the motion of the particle 

$(mv) =F 
At 

which can be rewritten in the form 

$(mv,)=$. $ (mzx) = $$ (mv7) = F, 

It is evident from this that the curve, 
b 
4 h, 

P 

which is the equilibrium form of the string, I 
coincides with the trajectory of the 
particle moving under the action of the 

h;d 

force F = - F,u. In particular, if the force 
acts along the normal to the string, the tension p is constant in abso- 
lute value and equal to the constant quantity of motion of the particle 

Let F, = - r x@, and let the curve MPN be the equilibrium form of 
the string (Figure). At the points M and N the string hangs over infinite- 
ly small ideal pulleys, and at the free ends of the string are attached 
equal loads P, = P, = CL. Let us impart to each element of the string a 
virtual displacement 6r, and let the string assume a new position MQN. 
lben the elementary work done by the force F,ds is 

F,ds.& = - (T x a), 6rd.s = (dr x 6r) .@, dr = zds (3.2) 

If we introduce the vector dS = dr x 6r, then its modulus 
d S = 1 dr x 6 r 1 is equal to the area element dS, shaded in the figure, 
and the vector itself is directed along the normal u to the area. ‘Ihere- 
fore 

F,ds-6r=dS+cD=cD,,dS 

i.e. the elementary work done by the force is equal to the flow of the 



vector Cp through the area element dS. Introduce a vector A, which is 
determined by its vorticity and divergence in the whole infinite space 

rot A = CD, divA = 0 (3.3) 

(in the particular case of the motion of an electron it differs from the 
vector potential of the magnetic field only by a scalar multiplier). The 
sum of the elementary works done by the forces F,& along virtual dis- 
placements is 

where the region B is bounded by the curves MPN and MQN. Apnlying 
Stokes’ theorem we obtain 

ZF,ds+cSr = 
s 

A.Tds - 
s 

A+zds - - 6 
s 

A.Tds 
MPN MQN MPN 

?he sum of the elementary works done by the forces P, and P, is 

According to the principle of virtual displacements, the algebraic 
sum of the elementary works done by the above forces must be equal to 
zero, i.e. 

6 
s 

(A.+q)ds=O (3.4) 
MPN 

‘ibus, the curve MPN, along which the integral 

I (A.~+P) $8 
A% 

assumes a stationary value, turns out to be: 

1) The equilibrium figure of a string under the action of the force 

F,ds = - (T x CD) ds, CD = rot A 

At the points M and N the string is hanging over infinitely small ideal 
pulleys at the free ends of which the loads P, = Pz = p are attached. 

2) The trajectory of a particle under the action of a gyroscopic force 
F = v x Qi. ‘Ihe quantity of motion of the particle p = mu is constant by 
virtue of Section 1 under the assumption that the mass depends only on 
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the velocity of the particle. 

Consider as an illustrative example the problem of a focussing magnetic 
field. Let the intensity H of the field be directed parallel to the z- 
axis, and let H be a function of a single coordinate y. It is required to 
determine this function from the condition that the tra+jectories of the 
electrons, issuing from the given point M(xl, 0) of the Oxy-plane, pass 
through the given point N(x2, 0) of the same plane. Here ~1 = mu is a 
given quantity. 

The corresponding mechanical problem is the following. Consider a 
cylindrical membrane [cloth 1 b the lateral surface of which is closed 
and the free ends ofwhich are hanging over horizontal rollers with axes 
parallel to the elements of the latter. The radii of the rollers are in- 
finitely small, and at the ends of the membrane there are attached equal 
loads P, = P, = p. Find the law according to which the density of a heavy 
nonhomogeneous fluid filling up this vessel must change in order that 
there exists an infinity of equilibrium forms for the membrane. 

d Let us return to the trajectories of the particle subject to the 
action of a potential force F. and a gyroscopic force F’. Without having 
recourse to the analogy with the equilibrium form of the string, let us 
show now that the trajectory of the particle, subject to the action of 
these forces, differs from all other curves passing through two given 
points by the fact that it assigns a stationary value to the action 

ft 
S = Ldt 

s 
(L= h+A.v-V,,) (4.1) 

t1 
where L is the Lagrange function. The initial and final instants (t, and 
t2) are given, and at these instants the moving particle must be at the 
given points. In relativistic mechanics we have, by virtue of (1.10) 

L= -mOc2 
If 

I--+A+-V,, (4.2) 

In the particular case of constant mass and a gyroscopic force equal 
to zero we have A = 0, X = (1/2)mv* = T, i.e. we arrive at the principle 
of least action in the form of Hamilton and Ostrogradskii. 

For the proof construct the Euler equations for the variational prob- 
lem 

6 tZ Ldt = 0 
s (4.3) 
t, 

We have 
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and consequently 

&(mv, =-gradV,+vxcI! 

lhe law of conservation (1.9) gives us 

h=ZT-/-V,---h, 

lllus, considering the 
can be excluded. %e then 

where 

S 

tz 

L=h+A+--V,=2T-f-Av-h 

mass as a function of the velocity only, time 
obtain 

N 
* 

VV = 1 (F& + A.v)dt, 
\ 

or IV= (mv+A.$dt 
1 (4.4) 

1, M 

Thus, the trajectory of a particle moving under the action of a 
potential and a gyroscopic force assigns a stationary value to the inte- 
gral (4.4) in comparison with all other curves, passing through the given 
points E and N. Here we have set 

and the velocity v must be found from the law of conservation (l.9) as a 
function of the coordinates for a given h. If a gyroscopic force only is 
acting, then q = mu = const and we arrive again at the equality (3.4). 

In relativistic mechanics we have, by virtue of (1.11) 
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From here it follows that 

and thus 

If we set A =- 0, h = moc2 + h, and let c + 00, then we arrive at the 
principle of least action in the form of h4aupertui.s and Euler. 
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